Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7994): 253-258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200292

RESUMO

Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.

2.
Nat Astron ; 7(9): 1098-1107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736027

RESUMO

Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.

3.
Nature ; 620(7972): 61-66, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468630

RESUMO

White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterized by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink towards the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium1,2. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools3, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor of about 2.5 below a temperature of about 30,000 kelvin4-8; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 kelvin are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is probably caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface9-11. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs-together with GD 323 (ref. 12), a white dwarf that shows similar but much more subtle variations. This class of white dwarfs could help shed light on the physical mechanisms behind the spectral evolution of white dwarfs.

4.
Nature ; 617(7961): 477-482, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198310

RESUMO

Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.

5.
Nature ; 617(7959): 55-60, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138107

RESUMO

Planets with short orbital periods (roughly under 10 days) are common around stars like the Sun1,2. Stars expand as they evolve and thus we expect their close planetary companions to be engulfed, possibly powering luminous mass ejections from the host star3-5. However, this phase has never been directly observed. Here we report observations of ZTF SLRN-2020, a short-lived optical outburst in the Galactic disk accompanied by bright and long-lived infrared emission. The resulting light curve and spectra share striking similarities with those of red novae6,7-a class of eruptions now confirmed8 to arise from mergers of binary stars. Its exceptionally low optical luminosity (approximately 1035 erg s-1) and radiated energy (approximately 6.5 × 1041 erg) point to the engulfment of a planet of fewer than roughly ten Jupiter masses by its Sun-like host star. We estimate the Galactic rate of such subluminous red novae to be roughly between 0.1 and several per year. Future Galactic plane surveys should routinely identify these, showing the demographics of planetary engulfment and the ultimate fate of planets in the inner Solar System.

6.
Nature ; 610(7932): 467-471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198793

RESUMO

Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes1-9. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf10-14, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs13-18. However, no known transitional CV is expected to reach an orbital period short enough to account for most of the helium CV population, leaving the role of this evolutionary pathway unclear. Here we report observations of ZTF J1813+4251, a 51-minute-orbital-period, fully eclipsing binary system consisting of a star with a temperature comparable to that of the Sun but a density 100 times greater owing to its helium-rich composition, accreting onto a white dwarf. Phase-resolved spectra, multi-band light curves and the broadband spectral energy distribution allow us to obtain precise and robust constraints on the masses, radii and temperatures of both components. Evolutionary modelling shows that ZTF J1813+4251 is destined to become a helium CV binary, reaching an orbital period under 20 minutes, rendering ZTF J1813+4251 a previously missing link between helium CV binaries and hydrogen-rich CVs.

7.
Nature ; 605(7908): 41-45, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508781

RESUMO

Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution.

8.
Nature ; 571(7766): 528-531, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31341301

RESUMO

General relativity1 predicts that short-orbital-period binaries emit considerable amounts of gravitational radiation. The upcoming Laser Interferometer Space Antenna2 (LISA) is expected to detect tens of thousands of such systems3 but few have been identified4, of which only one5 is eclipsing-the double-white-dwarf binary SDSS J065133.338+284423.37, which has an orbital period of 12.75 minutes. Here we report the discovery of an eclipsing double-white-dwarf binary system, ZTF J153932.16+502738.8, with an orbital period of 6.91 minutes. This system has an orbit so compact that the entire binary could fit within the diameter of the planet Saturn. The system exhibits a deep eclipse, and a double-lined spectroscopic nature. We see rapid orbital decay, consistent with that expected from general relativity. ZTF J153932.16+502738.8 is a strong source of gravitational radiation close to the peak of LISA's sensitivity, and we expect it to be detected within the first week of LISA observations, once LISA launches in approximately 2034.

9.
J Vis Exp ; (72)2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23426078

RESUMO

The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.


Assuntos
Astronomia/instrumentação , Óptica e Fotônica/instrumentação , Telescópios , Fenômenos Astronômicos , Astronomia/métodos , Raios Infravermelhos , Lasers , Óptica e Fotônica/métodos , Raios Ultravioleta
10.
Appl Opt ; 46(25): 6460-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17805388

RESUMO

Differential image motion monitors (DIMMs) have become the industry standard for astronomical site characterization. The calibration of DIMMs is generally considered to be routine, but we show that particular care must be paid to this issue if high-accuracy measurements are to be achieved. In a side by side comparison of several DIMMs, we demonstrate that with proper care we can achieve an agreement between the seeing measurements of two DIMMS operating under the same conditions to better than +/-0.02 arc sec.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...